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The existence of invariant relations is investigated for the generalized Euler-Poisson equations of the dynamics of a rigid body 
with a fixed point, for which integrals of energy, angular momentum and the geometric integral exist. Different formulations are 
considered, when the potentials of the applied forces are known and when they are determined according to the form of the 
invariant relations from the expressions for the first integrals. Earlier results [l] are extended to the case of one invariant relation 
of arbitrary structure, and the conditions for invariant relation of layer zero (in f? V Kharlamov’s terminology [2]) to exist are 
considered. Q 2001 Elsevier Science Ltd. All rights reserved. 

The method of invariant relations (IRS) [3,4], as developed up to an algorithm by F? V Kharlamov [2], 
enables one to investigate IRS by either of two approaches. The first presupposes the use of the 
differential equations of motion only. The second is based on the use of integrals. Using the second 
approach, existence conditions have been found [l] for three linear IRS of the Grioli-M. I? Kharlamov 
differential equations [5, 61. 

In this paper an example is presented which shows that, for given force and gyroscopic functions, 
the existence conditions for three linear IRS of the Grioli-M. P Kharlamov equations may not be the 
same as the conditions of [l]. One invariant condition is considered and an additional restriction is 
obtained, under which the results of [l] can be generalized. New classes of force and gyroscopic functions 
are established for the Grioli-M. l? Kharlamov equations, guaranteeing the existence of a single linear 
IR of layer zero. 

1. FORMULATION OF THE PROBLEM 

Consider the problem of the motion of a rigid body in a field of potential and gyroscopic forces, on the 
assumption that, as in the classical case, the differential equations of motion admit of three first integrals. 
In vector notation, we then have the following equations [5] 

ar. au 
x=xxux+p(v,ax)(vxax)+-xx+-xv av av (1.1) 

V=vxax (1.2) 

where x is the angular momentum vector of the body, v is a unit vector along the axis of symmetry 
of the force field, L(vr, v2, vs), U(v,, v2, v3) are scalar functions of the components of the 
vector 
v, u(v, ax) is a scalar function of the components of the vectors v and o = a~, o = (or, w2, o3) with 

WI = aiixi + ai+ + q3x3, O2 = u12x1 + u22x2 + a23x3 (1.3) 
O3 = a13XI + Q23x2 + a33x3 

xl, x2, x3 are the components of the vector X, and aii are the components of the tensor a. 
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In classical problems, p I 0 andL(vi, ~2, vj) and V(vi, vz, vs) are polynomials in Vi of up to the second 
order. If it is assumed that the function p depends only on vi (i = 1,2,3), we obtain M. P. Kharlamov’s 
equation [6]. This case is also considered below. 

Equations (1.1) and (1.2) have three first integrals: 

ar.x-2U(v,,v2,v,)=2E, x.v+ L(v,,v,,v,)=k, v.v= I 

where E and k are arbitrary constants. 

(1.4) 

Suppose one is faced with the problem of the conditions for the existence of an IR 

for Eqs (1.1) and (1.2). 

f(x,,X2,X3,V,.V2,V~)=O (1.5) 

In the first approach to using the IR method [2], one evaluates the derivatives of the function on the 
left of Eq. (1.5) along trajectories of Eqs (1.1) and (1.2). If the manifold defined by Eq. (1.5) and the 
conditions obtained by equating these derivatives to zero is not empty, it is called an invariant manifold 
of system (l.l), (1.2), and Eq. (1.5) is called an IR [2]. A special case, considered by Poincare [4] and 
Levi-Civita [5], is obtained when the derivative of the function on the left of Eq. (1.5) along trajectories 
of Eqs (1.1) and (1.2) is equal to zero on relation (1.5). In the general case, in order to establish that 
(1.5) is an IR, one has to investigate the functional dependence of (1.5) and the derivatives evaluated 
as stated above. If the sequence consisting of (1.5) and the derivatives contains 1 functionally independent 
terms, then (1.5) is called an IR of layer I- 1 [2]. 

The characteristic aspects of the application of the IR method are demonstrated by the following example. 
Suppose we are given a system of three differential equations 

X=x, j=x2iz2-b2. i = -(2x2 + Z* - b2)z-’ 

where b is a constant parameter. For this system, the relationx = 0 along trajectories ofli- = x = 0 is an IR of layer 
zero, and the relation y = 0 along trajectories of the equalities 

y=x2 +z2 _b2 - -0, jkx2 +z2 -b2 ~0 

is an IR of layer one. In the first case, the derivative of the IR vanishes identically on the given IR; in the second 
case, the second derivative of the IR vanishes on the given IR and the set defined by the first derivative. 

I? V Kharlamov’s second approach [2], based on using the first integrals of the differential equations 
of motion, consists in adding the integrals (1.4) to relation (1.5) and the conditions equating 
the derivatives of the function on the left of (1.5) along trajectories of Eqs (1.1) and (1.2) to 
zero. Investigating the functional dependence of the terms of the sequence thus constructed, one 
arrives at the conditions for IR (1.5) to exist. The definition of the layer of the IR remains unchanged 

PI. 
Thus, when investigating IRS, it is always necessary to specify the layer of the IR, or to define the 

properties of the IR with respect to system (l.l)-(1.4). 

2. THREE IRS. ORESHKINA’S RESULTS [l] 

In [l], three IRS of Eqs (1.1) and (1.2) with u = u(vi, v2, v$ were considered 

X; =gi(v,,V2*V3), i=l,2,3 (2.1) 

Using the integrals (1.4), the functions L = L(vl, v2, v3), U = U(v,, v2, v3) were determined on the 
basis of Eqs (1.3). Substitution of these functions into Eqs (1.1) and (1.2) gives three relations: 

(633v* -o*v,) [ PW,.V2.V3b~-3-q- ‘g* a& = 0 (123) 

I 3 1 (2.2) 

The symbol (123) means that the unwritten equations are obtained from (2.2) by a cyclic permutation 
of the numbers 1,2,3. Since the equality 03~2 - 02~3 = 0 (123) along trajectories of Eq. (1.2) leads to 
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stationary solutions of Eqs (1.1) and (1.2) it follows from (2.2) that [l] 

(2.3) 

Since only the first derivatives of (2.2) have been considered, this means that the functions 
L = L(vl, v2, v3), U = U(vl, v2, v3), p = p(vI, v2, v3) defined in [l] were such that Eqs (1.1) and (1.2) 
admit of three IRS (2.1) of layer zero. It follows from this method that relation (2.3) must hold for all 
values of vi, v2, v3 in the space R3. 

Consider the following example, which shows that the approach described previously in [l] is 
inapplicable for specific functions L = L(vl, v2, v3), U = U(vl, vz, ~3). 

Suppose the components of the gyration tensor au are aii = 0 (i f j), aii = ui, and L(v,, v2, v3), 
U(v,, v2, v3) are the following quadratic forms 

02% L(v,,v~,v,)=~(u,v~ -aou2vf), U(v,,v,,v,)=~(a,v~ +a&,vf) 
*I I 

where b2 and a,, are parameters. 
We specify three IRS of Eqs (1.1) and (1.2) 

xl =a2b2(e,v: +e,,)v,D -1 . x2 = b,(f,v: +f,)v,D -I 

x3 = 2a,b,(g;v; +g&D-’ 

where 

v:(v, ) = a,v: + PO. v~(v,)=I-13Ba-(l+a,)v~ 

We have used the following notation in (2.5) and (2.6) 

D=d,v; +d,,, d, =q,qb2 -~~)++(a, -a,), do =q[(a2 -u3)Po -a21 

q = aofaoq (a3 - o2 ) + 2qq - a2@, + q 11 

e0 = QI[~~$o + aoaz + aoh& - a2 )I 

fr =ao(a,a3+ala2-22a2a3)-a2(a3-a,), fo=a,[(a2+a3)&t-a21 

g, ‘=aO(q -a2). go =alPo 

(2.5) 

(2.6) 

(2.7) 

where PO is an arbitrary parameter. 
It can be shown that relations (2.4)-(2.7) define a solution of Eqs (1.1) and (1.2) characterized by 

the three IRS (2.5), provided that the function u(v,, v2, 9) = u(vi, vZ(vl), v~(v,)) = l.~*(vi) takes the 
following value (the prime denotes differentiation with respect to vi) 

u*(v,) = a2b2a;‘[(e,v; +e,)v,D-‘I’+ F(v,) 

W,)= &(a, -a,)(f,v: +foU;v: +goF2 +462a,(g;v: +go)D-’ + b2 

(2.8) 

If one uses Oreshkina’s method [l], the value obtained from (2.3) (2.5) and (2.7) for the function (2.3) 
on solution (2.6) differs from (2.8) in that now 

F(v, ) = b,([f, + %g, N, + (fo + 2a,g,,)lD-’ 

As will be explained below, the reason for this difference is that IR (2.1) and IR (2.5) belong to 
different layers, while the earlier approach in [l] makes no reference to the layer of the IR. 
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3. INVESTIGATION OF A SINGLE IR USING INTEGRALS 

Suppose we are given a single IR 

x, =g,(v,,v,,v,) (3.1) 

Let us assume that L = L(q, v2, v3), U = U(vl, v2, v3) are given differential functions of the variables 
vl, v2 and v3. We will also assume that (3.1) is an IR of layer zero in I? V. Kharlamov’s terminology [2]. 
To investigate IR (3.1), we will use the first integrals (1.4). We substitute expression (3.1) into (1.4) and 
choose a system of coordinates so that ~23 = 0. We obtain the following relations 

a2*xi +a33xf+2(a,zx,+a,3x3)g,(v,,Vp.V3)=cP,(V,,V2,V3) 
(3.2) 

.Qv2+x3v3 =(p2w,~v2~v3) (3.3) 

where 

If follows from (3.2) and (3.3) that 

x2 = g2 (v, . v2, v3) = &‘(a33v2cp2 + taW2 + v3 A) (35) 

x3 =g3(v,,vzVv3)= A;‘(az2%% -g,v2Az - 2 v 6) 

where 

A, = a22v: +a33v:, A2 = a,3v2 - a12v3 (3.6) 

A = &A: -2g,(a,2U33vz +az$+sv3)% -%2%cp: +A+& 

and cp, and (p2 are given by formulae (3.4). Since (3.1) is an IR of layer zero, the equation x, -g,(v,, 
v2, v3) = 0 is satisfied, or, because of relations (l.l)-( 1.3), 

(3.7) 

with oi as in (1.3), in which we must set ~23 = 0 and x1 = gl(vl, ~2, ~3). 

Now substitute expressions (1.3) and (3.5) into Eq. (3.7) 

A2 agl [( --/.l(v1,v2,v3) , av, 
at?, 

I +&a -+ 
h2 

+A,& 
agl+v i!cv au 

b3 3b2 2sy 1 + (a,, - a22 )“2u3 + 

at_. %_A,.%--a,,- 

av, h3 h3 

(3-S) 

where 
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A3 =0,3vI -q,v3. A4 =a,tv2 -f.q2V1, A5 = u22vI - q2V2r &j = q3V3 - ~33~1 

u2 = a33v2q2 + &v3A2 + ‘3 & u3 = u22v3~2 - g,v2A2 - v2& 

It can be shown that if gi(vt, v2, v3) satisfies the equation A = 0, then Eq. (3.8) is satisfied. Indeed, 
it will suffice to express Eq. (3.8) subject to the condition A = 0, in the form 

e(v,,:2.v3)%l”;” =O 
where 

@V,,V,,V,) = A;‘{g,[(qla33 -$3)V; +&2a13~2~3 +(a11a22 -“:2)v: - 

-(a,2a33V2 +~,3~22V3)V~l-(P2(u22u33VI -“12u33v2 -“,3u22v3)~*o 

because of the fact that vl, v2 and v3 cannot simultaneously be constants. 
The form of Eq. (3.8) shows that, for the prescribed functions L = L(vl, v2, v3), U = U(v,, v2, v3), 

the function u(vt, v2, v3) may be expressed, provided that A f 0, in terms ofg,(v,, v2, vj), L(vl, v2, v3), 
U(vl, v2, v3) and their derivatives. This fact distinguishes the case of a single IR from the case of three 
IRS [l], for which the function u(vt, v2, v~) is defined by (2.3). 

Nevertheless, even in the case of a single IR, property (2.3) which was masked by the use of 
Eq. (3.8), will hold. If we assume that A f 0, then Eqs (3.5) and (3.6) may be used to show that (2.3) 
follows from (3.8). This implies that in the investigation of a single IR of layer zero, a necessary condition 
for Eqs (1.1) and (1.2) to have such an IR is 

( ag2 ag3 p(v,.v,.v,)-$5----m_ 
I ah 1 A(V,,V2,V3)=0 

3 
(3.9) 

where g2 and g3 are defined by (3.5). Thus, property (2.3) is a necessary condition for the existence of 
a single IR (3.1), but only provided that A f 0. Here the IR is investigated with the help of first integrals. 

The singular case A = 0, as already observed, yields no conditions imposed on the function 
P(VlY V2, V3). 

Within the context of this version, it can be shown that the equations for i2, X7 in (1.1) cannot be 
replaced by integrals (3.2) and (3.3), so that the case A = 0 requires further investigation. However, if 
one formally proceeds using the IR method of [2], which uses first integrals, one must consider 
Eq. (3.9) as a necessary condition. It is in this sense that the method of [2] is an improvement over 
Oreshkina’s results [l], as applied to the consideration of a single IR. It is obvious that (2.3) is a sufficient 
existence condition both in the study of three IRS [l] and in the investigation of a single IR. 

Remark. Condition (2.3) plays different roles in the consideration of the direct and inverse problems for 
Eqs (1.1) and (1.2). If three IRS are given, then, following the earlier approach [I], a complete solution of the 
problem (albeit a fairly trivial one) is in reach. When one is investigating a single IR and the functions L(vi, v?, 
vs), U(V,, vz, v3) are given, then the definition of p(vl, v2, v3) or gi(v,, v2, vs) in the case A # 0 requires the use 
of Eq. (3.8) but Eq. (2.3) is only a compact notation for (3.8) given that equalities (3.5) are true. In that case, 
however, condition (2.3) reflects a property of differential equations (1.1) and (1.2) that admit of IR (3.1) and its 
corollaries - IRS (3.5). 

The case in which Eqs (1.1) and (1.2) describe classical problems, that is, when u = 0, is of particular 
interest. Condition (2.3) then becomes 

ag,+ag2 ; as3 -0 

a~, av, av, 

(3.10) 

which may be regarded as a condition for the existence of a single IR of layer zero for system 
(l.l), (1.2) when first integrals are used. Condition (3.10) will then hold for all vl, v2 and v3 in R3 
and, if it is used in the energy and area integrals of (1.4) the relation v: + vf + vi = 1 cannot be 
used. 

To demonstrate this, let us consider Eqs (1.1) and (1.2) subject to the conditions 
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p(v,,v*.v,)=O, L(v,.v,*Vj)=O, u(v,,v,,v,)=r(e~v), r=corlst 

e=(I,O,O), a,, =a, a22 =aJ3 =a,, a,2 =b,, a,3 =a23=0 

Then the equations of motion are 

x, = -4,x,x3, i, = (a - a,)x,x3 + b,x2x3 - b3 

i3 =-(a-a,)x,x2+bl(x: -x,2)+l-v2 

VI = alx3v2 - (a,x2 + b,x, )v3, v2 = (ux, + b,x2)v3 - a,x3v, 

ir, = (a,x2 + b,x,)v, -(ax, + b,x2)v2 

(3.11) 

The integrals of Eqs (3.11) are 

v:+v;+v,2=1 

ax: + a, (xi + xz) + 26,x,x2 - 2l-V, = 2E, x,v, + x2v2 + x3v3 = k 

Equations (3.1) admit of the well-known Hess IR x1 = 0 of layer zero. 
Let us find xz and x3 from (3.12) assuming x1 = 0: 

(3.12) 

x2 = N;‘(k&-v, + v,fi), x3 = N;‘(kfiv, - v,fi) 

N, =&(vz+v:), N=2(v~+v~)(~,+E)-k2a, 

(3.13) 

Using the egualitiesx, = 0 and (3.13) one readily verifies the truth of equality (3.10). However, if one 
puts vi + v3 = 1 - v: in (3.13) and substitutes the results into (3.10), the result is an expression which 
is non-zero. 

4. INVESTIGATION OF A SINGLE IR WITHOUT 
THE USE OF INTEGRALS 

Let (3.1) be an IR of layer zero without the use of integrals. The functions L = L(v,, v2, v3), U = U(v,, 
v2, v3) have to be determined. Since a single IR is given, these functions cannot be determined from 
the integrals (1.4). We substitute (3.1) into (1.3) and then substitute the Oi thus found and (3.1) into 
Eq. (3.7). The requirement that the resulting equality must hold for anyxz andx3 leads to the following 
conditions 

a22 = a339 a,2 = 0, a23 = 0 (4.1) 

E)=a,g, +a22(V3%-V,?) (4.2) 

( aL 
a22 V2P(V,,V2,V3)+- 

ag, ag, a8 ag, 

h2 ) ( 

=a13 V3--V2- 

JV2 h3 ) t 

+a22 V2--V,- 

h, h2 1 
(4.3) 

a22 V3 
( 

E-v2E)+(a,,a,, -Op)(v2i&-v3$$, =O 

Eliminating the function u(v,, v2, v3) from equalities (4.2) and (4.3), we have 

aL aL 
a22 V3 ( -- 

av2 V2 av, +a13V2g, +(a22Vt -a,3V3 1 t ?a._ ata 
V3 av2 V2 F 

) 

=o 

(4.4) 

(4.5) 

To solve differential equations (4.4) and (4.5), we introduce new functions 
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\y,(v,.v*‘v3)=y ‘( QllU22 -u:,)g:(v,.v2.V3)-u22~(V,~V2rVj) (4.6) 

Applying the general theory of integration of partial differential equations, we deduce from (4.4), (4.6) 
and (4.2) that 

U(v,,v,,v3)=4 ;(“,,u,, -u:,)g:(v,,v2,v3)+(P(v,,v: +v;) 
I 

&,v,,v,)=u;;~( q3v3 - +2vt I& (v, 9 v* 9 v3) - wv,, v: + v: ,J (4.8) 

p(v,,v,,v,) = u;; ( -2 
aa 

a(v: + v;) 
+ a22 

%Lo13ag’ 
av, av3 1 

(4.9) 

where cp and @ are arbitrary functions, which depend on v1 and vi + v:. 
Conditions (4.1) are Hess’s conditions for the case in which the centre of mass of the body lies on 

the first coordinate axis Oxi (where 0 is the fixed point). In the case under consideration, since 
xi = gi(vi, v2, vg), this coordinate axis is characterized by the property that the projection of the angular 
momentum vector onto it is a given function of the components vl, v2 and v3. It is interesting to verify 
condition (2.3). Having functions (4.7) and (4.8), one can now determine x2 = g2(v1, v2, v3) and 
x3 = gs(vi, v2, vs) from (3.5); then, identical transformations of (4.9) based on (3.5) yield relation (2.3). 
Thus, this remarkable property also holds for an IR (3.1) of layer zero without the use of integrals. 

This result, incidentally, is not trivial, since cases are known in rigid body dynamics in which IRS with different 
properties (different layers) yield quite different results [7]. For example, in this case, unlike the results of 
Section 3, the singular case A = 0 does not arise. 

Relations (4.7) and (4.8) are of interest because they enable one to obtain a solution of the problem 
of investigating a single IR and to construct functions (4.7) and (4.8) using a quite different principle 
compared with the analogous functions in the earlier method [l]. A mechanical realization of these 
relations may be established in the class of polynomials in the variables vi, v2 and v3. 

5. A SINGLE IR OF GENERAL FORM 

We will now generalize the results obtained in Section 3 to the case of an arbitrary IR (1.5), satisfying 
the condition 

Without loss of generality, we can determine 

from IR (1.5). 

XI = w(+.+.v,.v2,v3) (5.1) 

Substituting this expression into integrals (1.4), we obtain two equations for x2 and x3 as functions 
of the variables vl, v2 and v3. We will assume that (5.1) is an IR of layer zero in P. V Kharlamov’s 
terminology [2], that is, the derivative of the function x1 - w(x2, x3, VI, v2, v3) along trajectories of 
Eqs (1.1) and (1.2) vanishes on (1.5) at the values found from the integrals: 

Substituting x2 andX3 into IR (5.1) we obtain 

(5.2) 
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Applying the approach proposed above, we obtain the necessary condition for the existence of an IR 
(5.1) for Eqs (1.1) and (1.2): 

(5.3) 

where, because au = uji (i + j), 

Disregarding the singular case in which the first bracketed expression in (5.3) vanishes (the analogue 
of the case A = 0 considered in Section 3), we deduce from (5.3), by virtue of (5.2), that 

ae ae2 ae, cl(v,,v,,v,)=$+~+- 
1 2 h3 

(5.4) 

Thus, if Eq. (5.4) holds, Eqs (1.1) and (1.2) admit of an IR (5.1) of layer zero using first integrals. 
In practice, it is natural to convert (5.4) to a form in which function (5.1), its derivatives, and also the 
given functions L(vi, ~2, v3) and U(v,, v2, v3) occur explicitly. 

6. CONCLUSION 

The results established above have been obtained for IRS of layer zero. The fact that they do not carry 
over directly to the case of IRS of other layers will be considered by an example in which we investigate 
an IR of layer one without the use of first integrals, at the stage of evaluating the derivatives of the IR. 
Suppose that in Eqs (1.1) and (1.2) 

l.t(v,,v,,v,)=O, L=h.v-+v.v), o=s-v-+.v) 

where h = (hi, h2, &), s = (s,, s2, s3) are vectors with constant components and B and C are constant 
symmetric 3 x 3 matrices. Consider an IR of these equations in the form [8] 

f = X, - b,v, - b3v3 = 0 (6.1) 

(b, and b2 are constants). The parameters of Eqs (1.1) and (1.2) must obey the conditions 

ad = 0 (i # _j), a, = Ui, h, =I., =0, Bij =0 (i#j) 

sI = a,h3bJ, s2 = a2&cj, s3 = -a,b& 

41 = (u~U~-U,U~-U,U~)~~U;'U;', B22 =(a,u3 -ala2 - a2u3)b,u;‘a;’ 

f&,3 = (a,~, - ala3 - a2u3)b,a;‘a;’ 

G2 = -alu2b3c3a;‘, C,, = (a, - a3)u,b,b3a;’ 

C23 = (~2 - a,)u,b,c3u;’ 

c, , = C,, + u2cf + a, (a3 - aI )(b,2 - b;)a;’ 

C,, = C,, +u,b,2 +(a3 -a2)(& -a:b;)a;‘a;’ 

where c3 is an arbitrary constant. Let us evaluate the derivatives of the function on the left of (6.1) 
along trajectories of Eqs (1.1) and (1.2) on the assumption that the right-hand sides of the latter satisfy 
the above conditions, and then substitute the value of xi from (6.1) into the resulting equations. We 
obtain 
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where 

al4 
‘p(x,,v*.v3)=x* --v2 -c3v3 

a2 

‘la24 a3 - a2 o(x3.v,,v2,v3)=(a3 -az)x3 --a& --v +--- I 
a3 a3 

(ap+v2 - a&vd 

Expressions (6.2) vanish provided that 

Equations (1.1) and (1.2) on the IRS (6.1) and (6.3) reduce to the form 

a,.?, = (a2c3v, - qb3v2 )[a,b,v3 - a3h3 - (alb3v, + a2c3v2)1 

v, = a3x3v2 - (a, b, v2 + a3c3v3 )v3 
. * 
v2 = -a3x3v, + a, (b,~, + b3v3)v3 

C, = (a2c3v, - a,b3v2 )v3 

and they have first integrals 

v;+v;+v:=1 

x3 =&v; +d,v,) 
a3 

419 

(6.2) 

(6.3) 

(6.4) 

(a,b3v, +a2c3v2)v3 +a3h3v3 +(d, -a,b,)v: = 1, 

where &, and de are arbitrary constants. Hence the problem of integrating Eqs (6.4) reduces to 
quadratures. Using (6.1) (6.3) and (6.5) we find xi, x2, x3 as functions of vi, vr, v3: 

x, = b,v, + b,v,, x2 = $a,b,v, + a2c3v3), x3 = L(lOv;’ + d,,v3) 
a3 

for which conditions (3.10) do not hold. 
Equation (6.1) is an IR of layer one in I? V. Kharlamov’s terminology [2], but not of layer zero, as in 

Sections 2-5 of this paper. Thus, IRS of layer one with u = 0 require further investigation. 
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